
Population-level pipeline: 

1. Identify a subset of covariates  and invariant node 
 s.t. the regression function is invariant across 

environments, that is





   


 Enforce it via minimizing the RAMEN loss function:


, where





is the invariance penalty over one of the nodes .


 
2. Estimate the ATE via a classical doubly robust estimator.


       




Where  and .
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𝔼pool[Vinv ∣ XS] = 𝔼e[Vinv ∣ XS], ℙe − a.s.
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V ∈ {T, Y}

min
S

JS(X; V )

JS(X; V ) := max
e∈ℰ [ sup

h∈L0(ℝ|S|)
𝔼e [(Vinv − 𝔼pool[Vinv |XS])h(XS)]]
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V ∈ {T, Y}

𝔼e [μ1(XS)−μ0(XS)+
(Y−μ1(XS))T

π(XS)
−

(Y−μ0(XS))(1−T )
1−π(XS) ]

μt(XS) = 𝔼[Y |XS, T = t] π(XS) = 𝔼[T |XS]
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MethodologyProblem setting

• Identifying the average treatment effect (ATE) from 
observational data is possible using a valid adjustment set  


             

• Problem: Adjusting for all available covariates often 
introduces bias, especially when unobserved and post-
treatment variables are present.


S

ATE = 𝔼 [𝔼[Y |XS, T = 1] − 𝔼[Y |XS, T = 0]]

We propose Robust ATE identification from Multiple       
ENvironments (RAMEN), an algorithm that identifies the ATE  
by leveraging the invariance of either treatment or outcome 
mechanisms across multiple environments. 


In the presence of bad controls


Without the need to learn the causal graph


Via heterogeneity of multi-environment observational data

Goal: Identify treatment effects for different environments :
e

θe = 𝔼e[Ydo(T=1) − Ydo(T=0)]

Experiments

Computational approach

Problem: Searching over all subsets of covariates introduces 
exponential complexity.


Solution: a fully differentiable continuous relaxation of the 
subset search via the Gumbel trick. 


We select the covariates via 


where  is sampled randomly from a Bernoulli distribution 
with probability .


• The Gumbel approximation of Bernoulli sampling makes the 
loss differentiable w.r.t. the weights .

Xw = B(w) ∘ X,

Bj(w)
≈ sigmoid(wj)

wj

Prior work

1. Three synthetic scenarios in which the unobserved 
variable  may break the invariances between  and . U T, Y X

(b)  
invariance 

broken

Xp − T (c)  
invariance 

broken

Xp − Y(a) invariances 
preserved

 good controls{X1, X2}  good,  bad controlX2 X1

Key assumption: existence of an invariant node . For all 
 either


(a) All parents  of  are observed,  invariant;


(b) All parents  of  are observed,  invariant.

Vinv
e ∈ ℰ

Pa(T ) T 𝔼e[T |XPa(T)]

Pa(Y ) Y 𝔼e[Y |XPa(Y)]

Able to find a valid adjustment set when:

Full causal graph is 
known


• Vander Weele & 
Shipster 2011

Structural knowledge 
given such as 

anchor variables


• Cheng et al. 2022;


• Shah et al. 2022

Multiple 
heterogeneous 

datasets available


• Shi et al. 2021 
(leverages              

-invariance only)Y


