ETHzürich

PROBLEM SETTING • \mathbb{P}^{\diamond} over (X, U, Y(0), Y(1), Y, T) for $\diamond \in \{ \operatorname{rct}, \operatorname{os} \}$ • We observe $D_{\diamond} = \{(X_i, Y_i, T_i)\}_{i=1}^n$ sampled i.i.d from \mathbb{P}^{\diamond} **Trade-off between randomized and observational data:** • \mathbb{P}^{rct} satisfies internal validity: $T \perp (Y(1), Y(0))$ • we can estimate $\mu^{\text{rct}}(X) := \mathbb{E}_{\mathbb{P}^{\text{rct}}}[Y(1) - Y(0)|X]$ • but the support of $\mathbb{P}_X^{\text{rct}}$ is limited (e.g. no children) • \mathbb{P}^{os} covers a broader population: $\operatorname{supp}(\mathbb{P}_X^{\text{rct}}) \subset \operatorname{supp}(\mathbb{P}_X^{\text{os}})$ • but many sources of bias $\implies \mu^{os}(X)$ is not identifiable Can we detect when observational data does not allow reliable inference? ... in observational study ... in randomized trial transportability u^{os} (true effect of infeasible to test estimable **~~**~ effect of feasible to test rct (\approx REFERENCES 1. Muandet et al. 2020. Kernel conditional moment test via maximum moment restriction.

2. Hussain et al. 2023. Falsification of internal and external validity in observational studies via conditional moment restrictions.

3. Kim and Ramdas 2024. Dimension-agnostic inference using cross U-statistics. 4. Kevin Hillstrom 2008. The MineThatData e-mail analytics and data mining challenge

Detecting critical treatment effect bias even in small subgroups

Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, Fanny Yang Department of Computer Science, ETH Zürich

NULL HYPOTHESIS

Goal: Given a tolerance function δ , test for

 $H_0: |\tau^{\mathrm{rct}}(X) - \tau^{\mathrm{os}}(X)| \le \delta(X), \ \mathbb{P}_X^{\mathrm{rct}} - \mathrm{a.s.}$

How: We can test if for some $g^* : \mathbb{R}^d \to [-1, 1]$ in \mathcal{G}

 $H_0^{\mathcal{G}}: \tau^{\mathrm{rct}}(X) - \tau^{\mathrm{os}}(X) + g^*(X)\delta(X) = 0, \quad \mathbb{P}_X^{\mathrm{rct}} - \mathrm{a.s.}$ $:=\psi_{a^{\star}}(X)$

• but: g^* is unknown, and thus we cannot use the standard kernel conditional moment tests^{1,2}

TEST STATISTIC

Idea: The oracle cross U-statistic is asymptotically normal³

$$\hat{\mathbb{H}}^2(\psi_{g^*}) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=n+1}^{2n} \psi_{g^*}(X_i)$$

with X_1, \ldots, X_{2n} i.i.d. from \mathbb{P}^{rct} and bounded kernel k We can compute an asymptotically valid C.I. for

$$\exists_{\text{OPT}}^{2} := \min_{g \in \mathcal{G}} \left| \frac{\sqrt{n} \,\hat{\mathbb{H}}^{2}(\psi_{g})}{\hat{\sigma}\left(\hat{\mathbb{H}}^{2}(\psi_{g})\right)} \right| \leq \left| \frac{\sqrt{n} \,\hat{\mathbb{H}}^{2}(\psi_{g^{\star}})}{\hat{\sigma}\left(\hat{\mathbb{H}}^{2}(\psi_{g^{\star}})\right)} \right| \rightarrow |\mathcal{N}(0,1)|$$

• but: ψ_a depends on τ^{os} , which is estimated from data

Theoretical guarantees: Asymptotic validity

Assume that

 $n_{\rm os} \gg n$ and $\|\tau^{\rm os} - \hat{\tau}^{\rm os}\|_{L^2(\mathbb{P}^{\rm rc})}$ Then, under weak regularity conditions, we have $\frac{\sqrt{n}\,\hat{\mathbb{H}}^2(\hat{\psi}_{g^\star})}{\hat{\sigma}\left(\hat{\mathbb{H}}^2(\hat{\psi}_{g^\star})\right)} \to \mathcal{N}(0,1), \text{ as } n \to$

....

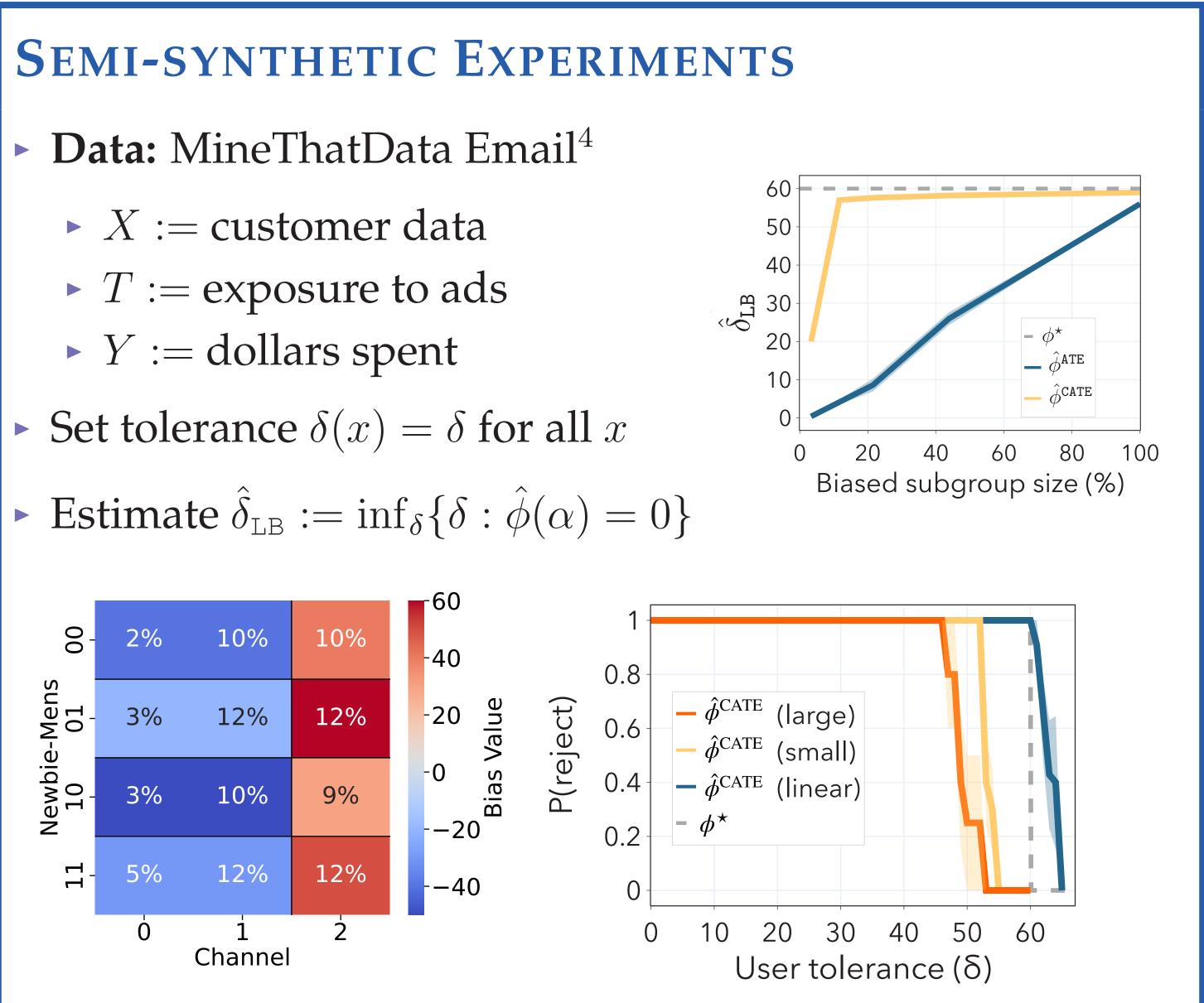
._

 $_{i})k(X_{i},X_{j})\psi_{g^{\star}}(X_{j})$

$$O_{\mathbb{P}^{\mathrm{os}}}(n_{\mathrm{os}}^{-1/2})$$

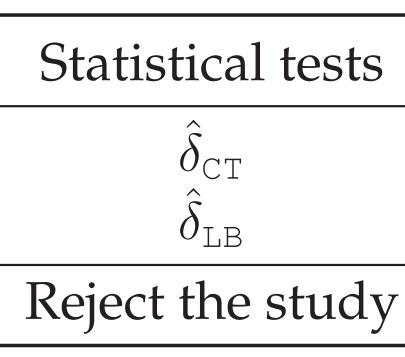
$$\rightarrow \infty$$
 and $n_{\rm os} \rightarrow \infty$

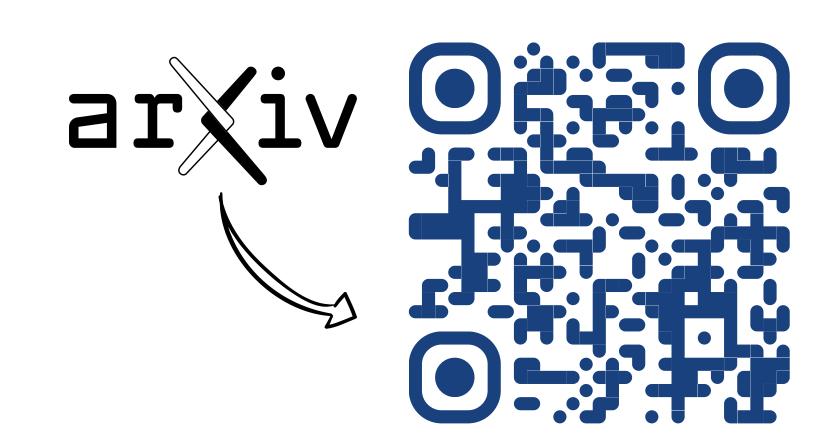
Hence, $\hat{\phi}_{\alpha} := \mathbb{I}\{\hat{\mathbb{H}}_{\mathsf{OPT}}^2 \geq z_{\alpha/2}\}$ is asympt. valid at level α



REAL-WORLD EVALUATION

- **Data:** Women's Health Initiative
 - T := hormone therapy (HT)
 - Y := coronary heart disease
- **Question**: Is there enough bias to explain away the benefits of HT in young women?
- **Ground truth**: No! (from established medical knowledge)
- **Our strategy**:
 - 1. Estimate $\hat{\delta}_{CT} := \mathbb{E}_{\mathbb{P}^{0}}$
 - 2. Reject study if $\hat{\delta}_{LB}$





$$\sum_{n=1}^{\infty} \left[\tau^{\text{os}}(X) \mid X_{\text{age}} \le 60 \right]$$
$$\geq \hat{\delta}_{\text{CT}}$$

	$\hat{\phi}^{ ext{CATE}}$	$\hat{\phi}^{ ext{ATE}}$	$\hat{\phi}^{\text{cate}}_{\delta=0}$	$\hat{\phi}^{\text{ATE}}_{\delta=0}$
	0.32	0.32	0.32	0.32
	0.25	0.11	X	X
-	0	0	1	1