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Motivation

Randomized experiments are costly and time-consuming

$40,000 average cost per participant of clinical trials

80% of clinical trials fail to reach enrollment targets on time

Can we leverage (multiple) foundation models trained on external
data sources?

Examples: language models trained on large text corpuses,
clinical models trained on observational data

Could be helpful if external data has relevant information

But... inferences may not be valid if model predictions are inaccurate

Our goal: Reduce required sample size of randomized trials with
externally trained models while guaranteeing valid statistical inference
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Problem setting

Distribution: P over (X ,Y (0),Y (1),Y ,A)

X ∈ Rd are covariates
Y ∈ R is the observed outcome (bounded)
Y (0),Y (1) ∈ R are potential outcomes
A ∈ {0, 1} is the treatment indicator

Data: Tuples (Xi ,Yi ,Ai )
n
i=1 drawn i.i.d. from P

Task: Efficiently estimate θ := E[Y (1)− Y (0)]
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Identification assumptions

Consistency: Y = Y (A)

Treatment is well-defined (e.g., protocol-driven interventions)
Observed outcome is one of the potential outcomes

Randomization: A ⊥⊥ (Y (0),Y (1))

Directly supported by the study design
Treatment is independent of potential outcomes

Positivity: π = P(A = 1) > 0

Both treatment and control have non-zero probability
In (most) randomized experiments, π is known by design

Under these assumptions:

θ = E[Y (1)− Y (0)] = E[Y |A = 1]− E[Y |A = 0]
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Difference in means estimator

The simplest approach for randomized experiments:

θ̂dm =
1

n1

∑
i :Ai=1

Yi −
1

n0

∑
i :Ai=0

Yi , where na = |{i : Ai = a}|

Consistent and asymptotically normal:

√
n(θ̂dm − θ)⇝ N (0,Vdm)

Is this the most efficient estimator? No, covariates are ignored!

Leverage availability of covariates → smaller confidence intervals
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Imputing missing data with predictive models

Main idea: If we had a predictive model ĥ, we can use it to predict
the counterfactuals outcomes for each i

θ̂aipw(ĥ) =
1

n

n∑
i=1

Ai

π
(Yi − ĥ(Xi , 1)) +

1

n

n∑
i=1

ĥ(Xi , 1)

−

[
1

n

n∑
i=1

(1− Ai )

(1− π)
(Yi − ĥ(Xi , 0)) +

1

n

n∑
i=1

ĥ(Xi , 0)

]

Introduced as Augmented Inverse Propensity Weighted (AIPW)
estimator by Robins et al. ’94 where ĥ is trained on RCT

Similar to PPI-style estimators as in Angelopoulos et al. ’23 where ĥ
can be any external model
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ĥ(Xi , 0)

]

Introduced as Augmented Inverse Propensity Weighted (AIPW)
estimator by Robins et al. ’94 where ĥ is trained on RCT
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1

n

n∑
i=1

Ai

π
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Standard AIPW using in-trial data

In practice, standard AIPW uses a simple outcome model ĥ (e.g.
linear) learned on RCT data

ĥ(·, a) ∈ arg min
h∈H

1

na

∑
i :Ai=a

L(Yi , h(Xi , a))

If fit using cross-fitting instead of the whole data-set, we have both

unbiasedness, i.e.
E[θ̂aipw(ĥ)] = θ

and if ĥ asymptotically converges to h†, we have

√
n(θ̂aipw(ĥ)− θ)⇝ N (0,Vh†)

Variance Vh† is minimized when h† = E[Y |X ,A], achieving the lowest
possible variance among all regular estimators
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AIPW limitations and new opportunities

In RCTs, sample size is too small.

Unlikely to learn a good outcome regression from (Xi ,Yi ,Ai )
n
i=1.

A simple function class H (e.g., linear), yields limited gains.
Achieving efficiency requires a good estimate of E[Y |X ,A]

Opportunity: Leverage external data to learn better outcome models
For medical applications:

Electronic Health Records (EHR)
Large observational studies
Historical clinical trials

For social sciences (results in this paper):

Foundation models trained on publicly available texts
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Leveraging external data

Challenge: External models may not generalize to trial population

Distribution shift between external data and trial data
Naively using external models could yield worse efficiency than
standard AIPW

What guarantees can we still have if we use an external model
without requiring any additional assumptions?

Need to fall back to trial data when external models perform poorly
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Related Work

Method Unbiased Can be asympt.
better than

standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW ✓ N/A N/A

10 / 22



Related Work

Method Unbiased Can be asympt.
better than

standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW ✓ N/A N/A

Shrinkage estimators [1] × ✓ ✓

[1] Cheng and Cai (2021), Rosenman et al. (2023)

10 / 22



Related Work

Method Unbiased Can be asympt.
better than

standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW ✓ N/A N/A

Shrinkage estimators [1] × ✓ ✓
PROCOVA [2] ✓ × ✓

[1] Cheng and Cai (2021), Rosenman et al. (2023)
[2] Schuler et al. (2021)

10 / 22



Related Work

Method Unbiased Can be asympt.
better than

standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW ✓ N/A N/A

Shrinkage estimators [1] × ✓ ✓
PROCOVA [2] ✓ × ✓
PPI-style estimators [3] ✓ ✓ ×

[1] Cheng and Cai (2021), Rosenman et al. (2023)
[2] Schuler et al. (2021)

[3] Angelopoulos et al. (2023), Poulet et al. (2025)

10 / 22



Related Work

Method Unbiased Can be asympt.
better than

standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW ✓ N/A N/A

Shrinkage estimators [1] × ✓ ✓
PROCOVA [2] ✓ × ✓
PPI-style estimators [3] ✓ ✓ ×
H-AIPW (Ours) ✓ ✓ ✓

[1] Cheng and Cai (2021), Rosenman et al. (2023)
[2] Schuler et al. (2021)

[3] Angelopoulos et al. (2023), Poulet et al. (2025)

10 / 22



Our method: H-AIPW

In-Trial Model

External Models

AIPW Estimators

Final Estimator

RCT

(Xi ,Yi ,Ai )
n
i=1

External Data 1

External Data k

...

ĥ

f1

fk

...

ĥ(Xi , ·)

f1(Xi , ·)

fk(Xi , ·)

...

θ̂(ĥ)

θ̂(f1)

θ̂(fk)

...

+ θ̂H-AIPW

(Xi)
n
i=1

(Yi ,Ai )
n
i=1

λ̂
1

λ̂2

λ̂ k+
1
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ĥ

f1

fk

...
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Hybrid augmented inverse probability weighting

Foundation Models:
Access to multiple pre-trained foundation models f1, f2, . . . , fk
Models trained on external data, potentially more accurate than ĥ

Include AIPW estimators using each model: θ̂aipw(fj)

Include the standard AIPW estimator with ĥ estimated from trial data

H-AIPW Estimator

θ̂λ = λ1θ̂aipw(ĥ) +
k∑

j=1

λj+1θ̂aipw(fj)

where λ ∈ Rk+1 such that
∑k+1

j=1 λj = 1
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Why weights must sum up to 1

The constraint
∑k+1

j=1 λj = 1 is crucial for unbiasedness

With this constraint, H-AIPW is in the class of AIPWs with a
combined outcome model:

θ̂λ = λ1θ̂aipw(ĥ) +
k∑

j=1

λj+1θ̂aipw(fj)

= θ̂aipw

λ1ĥ +
k∑

j=1

λj+1fj


H-AIPW inherits all the nice theoretical properties of AIPW
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How to choose λ?

True optimal weights minimize the variance of the combined estimator

λ∗ = argmin
λ
λTΣλ subject to

k+1∑
j=1

λj = 1

Σ ∈ R(k+1)×(k+1) is the covariance matrix with elements:

Σjl = Cov(ψ(Z , gj), ψ(Z , gl))

where ψ(Z , g) is the influence function corresponding to θ̂AIPW (g)
g1 = ĥ is estimated from the RCT and gj+1 = fj for j = 1, . . . , k

Closed-form solution:

λ∗ =
Σ−11

1TΣ−11
and in practice: λ̂ =

Σ̂−11

1T Σ̂−11
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Statistical Guarantees

With this choice of weights λ, we obtain the asymptotic guarantees:

Theorem (H-AIPW Guarantees) in DAWDDYD ’25:

(a) Consistency and Asymptotic Normality:

√
n(θ̂λ̂ − θ)⇝ N (0,Vλ∗)

(b) Efficiency Guarantee: The asymptotic variance is no greater
than any individual estimator:

Vλ∗ ≤ min
j=1,...,k+1

Vj

where Vj is the asymptotic variance of the j-th estimator.

Asymptotic efficiency never worse than standard AIPW!

If models are accurate, may have smaller asymptotic variance!
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Empirical evaluation on real data

Till now: social science experiments. (Plan: extend to clinical trials)

Evaluate H-AIPW on multiple survey experiments:
Foreign Policy (Silverman, 2022)
Sociology (Melin, 2022; Kennedy, 2020; Caprariello, 2013)
Political Science (Fahey, 2023)
Psychology (Brandt, 2021)
Economics (Haaland, 2022)

Foundation models used:
GPT-4o, Claude 3.5 Haiku, LLaMA 3 70B
Multiple prompts (10 per model) to improve accuracy

We compare against:
Difference in means estimator
Standard AIPW with (linear) outcome regression from trial data
PPI based PPCT (Poulet, 2025) also leveraging foundation models
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PPI based PPCT (Poulet, 2025) also leveraging foundation models
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Concrete Example: LLM Predictions for Political Science

A=0: ”protests banned due to safety concerns”,

A=1: ”Protests banned safety concerns & cancel culture”

Outcome: Degree of agreement with ”Cancel culture is a problem”

LLM Prompt (with A=1):

You are a 35-year-old female Democrat with liberal views and $75k
income. A university banned an Antifa protest citing safety concerns

and that such protests contribute to cancel culture.

How much do you agree: "Cancel culture is a big problem in today’s

society"? (1-5 scale)

LLM Response:

As someone with liberal views, I’m skeptical of the university’s framing. While I be-
lieve in maintaining safety, linking Antifa protests to ”cancel culture” seems politically
motivated.
I’d rate my agreement as 2 - Disagree.
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Sample size reductions

Each study is subsampled to
n = 75 participants

The bars show the percentage
sample size reduction to match
confidence interval width of
standard AIPW

H-AIPW achieves the same
precision as standard AIPW
with up to 20% fewer samples
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Variance reduction
Table 1: Performance comparison of H-Aipw against baseline estimators (Ppct, Dm, Aipw, Procova) across
several randomized experiments. We randomly subsample each study at sample sizes n = 100 and n = 200. We
report the variance of each estimator averaged over R = 10k subsampling repetitions. Cells shaded in blue denote the
standard Aipw baseline that should be improved upon using external data; green indicates better precision (lower
variance) than standard Aipw; and red indicates worse precision (higher variance) than standard Aipw.

Melin et al. (2022) Silverman et al. (2022) Kennedy et al. (2020) Fahey et al. (2023)

Estimator n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

H-Aipw 10.39 10.28 2.10 2.14 17.09 17.47 4.87 4.94

Ppct 11.00 11.06 2.25 2.26 17.87 17.97 4.88 4.91

Procova 11.81 10.62 2.24 2.22 18.38 18.11 5.18 5.09

Aipw (boosting) 12.82 12.44 2.82 2.83 23.09 23.12 6.31 6.37

Aipw (standard) 11.72 10.57 2.22 2.20 18.09 17.95 5.09 5.04

Dm 11.10 11.10 2.30 2.30 18.07 18.08 5.61 5.62

Caprariello et al. (2013) Brandt (2013) Haaland et al. (2023) Shuman et al. (2024)

Estimator n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

H-Aipw 5.88 5.96 11.86 11.90 4.49 4.44 8.46 8.91

Ppct 5.99 6.01 12.07 12.12 4.50 4.52 9.08 9.14

Procova 6.41 6.13 12.77 12.25 4.73 4.44 9.12 9.55

Aipw (boosting) 7.79 7.60 15.20 14.70 5.39 5.22 10.53 10.67

Aipw (standard) 6.39 6.18 12.55 12.13 4.82 4.55 9.20 10.31

Dm 6.15 6.15 12.81 12.80 5.72 5.71 13.83 13.83

Results Table 1 reports the estimated variance of several competing estimators across eight different
experimental studies and two sample sizes (n = 100 and n = 200). Across nearly all scenarios, H-Aipw
consistently achieves the lowest variance among all estimators, and hence the tightest confidence interval.
In particular, we observe variance reductions of roughly 5–11% compared to the standard Aipw estimator
based on experimental data only. The gains are especially pronounced in the small-sample setting (n = 100),
where reducing variance is most critical. As expected, we observe that the Ppct estimator can be less
precise than the standard Aipw estimator. This can be explained by noting that Ppct is only guaranteed
(asymptotically) to be at least as precise as the difference in means estimator (Dm). Further, we observe
that the Aipw estimator using a complex function class (boosting) suffers from very high variance, as the
small sample sizes in the randomized experiments do not allow complex modeling choices. Lastly, while
Theorem 2 guarantees that H-Aipw provides valid confidence intervals asymptotically, empirical results in
Appendix B.1 confirm that all evaluated estimators—including H-Aipw—maintain near-nominal coverage
levels in finite samples.

Image treatments and contamination The study by Shuman et al. [37] is particularly relevant for two
reasons. First, its data was published in December 2024, after the last known training cutoff for GPT-4o,
ensuring it was not included in the model’s training set. Second, the treatment is an image rather than
text, allowing us to evaluate our statistical framework beyond the text modality. Since the other foundation
models do not support image inputs, we rely only on GPT-4o for outcome predictions in this study. Even
so, H-Aipw achieves the lowest variance among all baselines, outperforming both Ppct and Procova,
suggesting that its gains over other approaches that integrate external models are not only due to the access
to multiple models.
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Impact of model scale
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Larger models tend to provide better predictions, leading to
smaller variance and better efficiency gains
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Conclusion

H-AIPW improves efficiency of randomized experiments by integrating
predictions from multiple foundation models

Provides substantial precision gains (up to 20% sample size reduction)

Maintains valid statistical inference without additional assumptions

Limitations: Success depends on foundation models being well-aligned
with the experimental domain

GitHub repository: https://github.com/jaabmar/HAIPW
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Thank You! Any Questions?

Piersilvio De
Bartolomeis

Javier Abad Guanbo Wang Konstantin
Donhauser

Raymond Duch Fanny Yang Issa Dahabreh
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